Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology.
نویسندگان
چکیده
During cerebral cortical neurogenesis, neuroblasts in the ventricular zone (VZ) undergo a shape change termed "interkinetic nuclear migration" whereby cells alternate between fusiform and rounded morphologies. We previously identified lp(A1), the first receptor gene for a signaling phospholipid called lysophosphatidic acid (LPA) and showed its enriched expression in the VZ. Here we report that LPA induces changes in neuroblast morphology from fusiform to round in primary culture, accompanied by nuclear movements, and formation of f-actin retraction fibers. These changes are mediated by the activation of the small GTPase, Rho. In explant cultures, where the cerebral cortical architecture remains intact, LPA not only induces cellular and nuclear rounding in the VZ, but also produces an accumulation of rounded nuclei at the ventricular surface. Consistent with a biological role for these responses, utilization of a sensitive and specific bioassay indicates that postmitotic neurons can produce extracellular LPA. These results implicate LPA as a novel factor in cortical neurogenesis and further implicate LPA as an extracellular signal from postmitotic neurons to proliferating neuroblasts.
منابع مشابه
Lysophosphatidic acid stimulates neurotransmitter-like conductance changes that precede GABA and L-glutamate in early, presumptive cortical neuroblasts.
During neurogenesis in the embryonic cerebral cortex, the classical neurotransmitters GABA and L-glutamate stimulate ionic conductance changes in ventricular zone (VZ) neuroblasts. Lysophosphatidic acid (LPA) is a bioactive phospholipid producing myriad effects on cells including alterations in membrane conductances (for review, see Moolenaar et al., 1995). Developmental expression patterns of ...
متن کاملVentricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex
Neocortical neuroblast cell lines were used to clone G-protein-coupled receptor (GPCR) genes to study signaling mechanisms regulating cortical neurogenesis. One putative GPCR gene displayed an in situ expression pattern enriched in cortical neurogenic regions and was therefore named ventricular zone gene-1 (vzg-1). The vzg-1 cDNA hybridized to a 3.8-kb mRNA transcript and encoded a protein with...
متن کاملLysophosphatidic acid stimulates neuronal differentiation of cortical neuroblasts through the LPA1-G(i/o) pathway.
Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates cortical development. Here we examined how LPA influences the cell fate of cortical neuroblasts using a neurosphere culture system. We generated neurospheres in the presence of basic fibroblast growth factor (bFGF). Treatment with LPA throughout the culture period significantly reduced the number of cells in the neuro...
متن کاملDual regulation of actin rearrangement through lysophosphatidic acid receptor in neuroblast cell lines: actin depolymerization by Ca(2+)-alpha-actinin and polymerization by rho.
Lysophosphatidic acid (LPA) is a potent lipid mediator with actions on many cell types. Morphological changes involving actin polymerization are mediated by at least two cognate G protein-coupled receptors, LPA(1)/EDG-2 or LPA(2)/EDG-4. Herein, we show that LPA can also induce actin depolymerization preceding actin polymerization within single TR mouse immortalized neuroblasts. Actin depolymeri...
متن کاملLysophosphatidic acid influences the morphology and motility of young, postmitotic cortical neurons.
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that produces process retraction and cell rounding through its cognate receptors in neuroblastoma cell lines. Although the expression profile of LPA receptors in developing brains suggests a role for LPA in central nervous system (CNS) development, how LPA influences the morphology of postmitotic CNS neurons remains to be determined. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 228 1 شماره
صفحات -
تاریخ انتشار 2000